PHYSICAL REVIEW E VOLUME 59, NUMBER 4 APRIL 1999

Directed percolation depinning models: Evolution equations
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We present the microscopic equation for the growing interface with quenched noise for the model first
presented by Buldyrest al.[Phys. Rev. A45, R8313(1992]. The evolution equation for the height, the mean
height, and the roughness are reached in a simple way. The microscopic equation allows us to express these
equations in two contributions: the contact and the local one. We compare these two contributions with the
ones obtained for the Tang and Leschhorn mddlys. Rev A45 R8309(1992] by Braunsteinet al.

[Physica A,266, 308(1999]. Even when the microscopic mechanisms are quiet different in both models, the
two contributions are qualitatively similar. An interesting result is that the diffusion contribution, in the Tang
and Leschhorn model, and the contact one, in the Buldyrev model, leads to an increase of the roughness near
the criticality. [S1063-651X99)00504-§

PACS numbeis): 47.55.Mh, 68.35.Fx

I. INTRODUCTION contribution tends to smooth out the surface; this case domi-
nates forp>p. (wherep.=0.461 is the critical pressure
The description of the noise-driven growth on a self-affineThe positive contribution enhances the roughness. At the
interface far from equilibrium is a challenging problem. The critical pressure the substratum contribution to the temporal
interface has been characterized through scaling of the integlerivative of the square roughness is practically constant, but
facial widthw with time t and lateral sizé.. The resultis the the diffusion contribution is very strong. This last contribu-
determination of two exponeni8 and « called dynamical tion has important duties on the power law behavior.

and roughness exponents, respectively. It is well known that In this paper we focus the attention in the Buldyehal.
interfacial width w~L® for t>t* and w~t? for t<t*, model of DPD. We show that this model presents several

wheret* =L%# is the saturation time. These properties oc-qualitative features of the TL model. We write a ME, starting

cur for many models of surface growth. The values of thefrom the microscopic rules, for the evolution of the height as
exponents leads to the classification of these models in dif2 function of time. The ME allows us the identification of
ferent universality classes. Several models, belonging to th&v0 contributions that dominates the dynamics of the system,
same directed perco|ation dep|nn|r@PD) universa"ty the “contact” and the “local” one. In this context we Study
class, have been introduced to explain experiments on fluithe mean height spe¢¥HS) and the temporal derivative of
imbibition in porous media, roughening in slow combustionthe square interface widiidSIW) as a function of time. We
of paper, growth of bacterial colonies, etc. show that the contact contribution smooths out the surface
It is currently accepted that the quenched disorder playfor p well above the criticality but enhances the roughness
an essential role in those experiments. The DPD models tak&ear the critical value. To our knowledge, the separation into
into account the most important features of the experiment&vo contributions for all the quantities studied in the present
[1,3]. The two first models were simultaneously introducedPaper and the important duties of the contact contribution to
by Buldyrevet al.[1] and Tang and Leschhof&] to explain the critical power law behavior has never been studied be-
the fluid imbibition in paper sheet. Several authors have fofore. The paper is organized as follows. In Sec. Il we write
cused their attention on scaling properties and relationship&'e microscopic equation for the evolution of height, the
between the dynamical and statics exponent for these modean height, and the roughness for the Buldyehal.
els. The Tang and LeschhoffiL) model has recently re- model. We study the MHS, analyzing the contact and the
viewed by Braunsteiret al. [4,5] from a different point of local contributions. Also, the two contributions to the DSIW
view than the traditional one. The principal contribution wasare analyzed. This separation into two contributions allows
the restatement of the microscopic equatibtE) for the TL ~ US tO explain the mechanism of roughening. In Sec. Il we
model (see Appendix This equation allows the separation compare the Buldyreet al. model with the TL model. Fi-
into two contributions: the substratum contribution by localnally, we conclude with a discussion in Sec. IV.
growth and the diffusion one. They found that the diffusion
contribution to the temporal derivative of the square rough- Il. BULDYREV et al. MODEL
ness may be either negative or positive and that the behavior ) _ _
of this contribution depends on the presspr&he negative A. Microscopic equation
The interface growth takes place in a lattice of edge
with periodic boundary conditions. A random pinning force
*Electronic address: Ibrauns@mdp.edu.ar g(r) uniformly distributed in[0,1] is assign to every cell of

1063-651X/99/504)/42435)/$15.00 PRE 59 4243 ©1999 The American Physical Society



4244 L. A. BRAUNSTEIN et al. PRE 59

the lattice. For a given pressupg the cells are divided in
two groups, active(free) cells with g(r)<p and inactive
(blocked cells withg(r)>p. The interface between wet and
dry cells is specified by a set of integer column heights
(i=1,...L). At t=0 we start with flat initial conditions,
i.e.,h;=0 for alli. During the growth, a column is selected
at random with probability 1/ and the highest dry active
cell, in the chosen column, that is nearest neighbor to a wet
cell is wetted. Afterwards, we wet all the dry cells below it.
In this model, the time unit is defined as one growth attempt.
In numerical simulations at each growth attempt, the tirise
increased byst=1/L. In this way, afterL growth attempts,
the time is increased by one unit. In our simulations we use
L=8192.

We consider the evolution for the height of thk site of
the process described above. Let us denotehlfy) the
height of thei-th generic site at timé From the microscopic
rules we obtain the evolution for théh height in the next
time stepst=1I/L,

In(p ! dh/dt)

hi(t+ot) =hi(t) + ot{O (= z)Fi(h;+1)
+[1-0(=2z)]Yi}, &Y

where® (x) is the unit step function defined &(x)=1 for
x=0 and equals to 0 otherwisg;(h;+]j) equal to 1 if the

. - . ST . - FIG. 1. Plots ofp~*dh/dt vst. The top(bottom plot shows the
cell is active and O if the cell is inactive €j=<z),z

results for the Buldyreet al. (Tang and Leschhojrmodel. For the

=maxh_1,h1)—h;, and top plot the parametgris 0.56 (), 0.531 O), and 0.51 {/). For
the bottom plot the parameteris 0.49 (), 0.461 ©), and 0.4
Yi=zFi(hi+z)+(z—DFi(hi+z-1) (V).
X[1=Fi(hi+2z)]+(z—2)Fi(hi+z—-2)
X[1—Fi(hi+z—1)][1—Fi(h+z)]+- - The first terms of both equations can be identified as the
local growth contribution, and the second term as the contact
+Fi(hi+ D[1-Fi(hj+2)]--- growth contribution. We shall see in Sec. Il C that the sepa-
X[1=Fi(hi+z—-1)][1-F,(h+2)], ration into these two analytical terms allows us to show how

the contact mechanism enhances the roughness near the criti-

cality. In the present paper we focus only on the dynamical

is the increase of the height in thth column due to the b P * ;
. . ehavior, i.e.t<t*=L for the mean height and roughness
contact with the nearest lateral neighbor. The term be'tweepIn the DPD modelsy/ 8=1) g 9

braces in Eq(1) takes into account all the possible ways the
sitei can growth. The height in the sités increased byi) 1
if hj=min(h.,h_,) and F;(h;+1)=1, or (i) Y; if h;
<min(h;;1,hj_1) andF;(h; +Y;)=1. Otherwise, the height is B. Mean height
not increased. We shall call contact contribution to the term
[1-0O(—2z)]Y; [related to caséii)] and local contribution
to the term®(—z)F,(h;+1) [related to casé)].
Averaging Eq(1) over the lattice, takingt— 0, the evo-
lution equation for the mean height is

The top plot of Fig. 1 shows the MHS as a function of
time in three regimegmoving, critical, and pinning phases
The initial condition for the MHS i in all regimes. At the
criticality we found for the mean height a power law behav-
ior with the same dynamical exponent that the roughness one
dh B=0.68+0.02 for p.=0.531. In the moving and pinning
_ phase we can see that this power law does not hold. Below
Gt (@R H[1=0(=2)]Yy), @ e criticality, in the pinning phase, the MHS goes to zero.
Above, in the moving phase, the MHS goes to a certain
and the evolution equation for the square interface width isconstant value. The left plots of Fig. 2 show the contribu-
tions to the MHS: the local ong® (—z)F;) and the contact
one ({1-0O(—2z)]Y;). The local contribution, which is
dw? equal top att=0, is stronger in the early time regime. This
—ar = X(hi=(hi)O(=2z)F) is because in this regime the difference of heights between
nearest neighbors is mostly less than one. This contribution
+2{(hi—(h)[1-0(—2z)]Y;). 3 set into motion the contact growth. In the moving phésze



DIRECTED PERCOLATION DEPINNING MODELS. .. 4245

oy
o
N
% -]
E % vv'...
l% ° A
-1 Q“MM“AA oo vv‘:.-' i
L
AA...O. °°
“napactthnting
-2} o i
Ao
AD
AP
4%
1 1 1 1 1 1 L4 o
-3-2-10 1 2 3 4 5 6
In t
. oo o FIG. 3. DSIW as a function of time. The tofbottom plot
-5 210123456 -2-10123465€6 7 shows the results for the Buldyrest al. (Tang and Leschhojn
iIn t model. For the top plot the parameteis 0.7 (O), 0.56 (V), 0.531

(@), and 0.51 ). For the bottom plot the parameteis 0.7 (O),
0.49 (V), 0.461 @), and 0.4 (\). In both models the symb@®

FIG. 2. In-In plots of different contributions to the MHS as -~ .
shows the critical behavior.

function of time for the Buldyreet al. model (left plots) and the
Tang and Leschhorn modélight plotg, for different values op.
The circles represent the contact contributigeft plots) and the
diffusion contribution(right plots. The squares represent the local to the DSIW is always positive. Ag decreases, this contri-
contribution (left plots) and the substratum contributiofright bution becomes less important, but always rough the inter-
plotg). For both models, the top,_pottom, and middle plots show thez e On the other hand, fap., the contact contribution
moving, the pinning, and the critical phases, respectively. 2(h—(h)[1-O(—2z)]Y;) can take negative values,
smoothing out the surface. Otherwise, fo p., the contact
contribution is always positive roughening the interface. One
left top plot of Fig. 2 both contributions go to a certain could expect that the contact contribution always smooths
constant. In the intermediate regime the local contributiorout the surface because it tends to widen the roughen picks.
decreases while the contact one increases. At the criticalitiowever, near the criticality, the contact growth happens
and in the pinning phasésee left middle and left bottom mainly in lateral neighbors cells to few height terraces above
plots of Fig. 2, respective)ythe local contribution decreases the mean height. Then, this new wetted column smooths out
continuously fromp to zero. The contact contribution in- locally, but it moves away from the mean height increasing
creases from zero to a maximum value and then decreas# roughness.
reaching asymptotically the MHS. In all phases both contri-
butions are equal at=1. This means that aftdr-growth
attempts, the interplay between both mechanisms are equal
independently ofp. After this, the dynamical behavior is
strongly dominated by the contact mechanism.

IIl. COMPARISONS WITH THE TANG
AND LESCHHORN MODEL

We rescue the similarities between the Buldye¢al. and
C. Roughness the Tang and Leschhorn models despite the strong micro-
) scopic differences between their rules. In a previous paper

The top plot of Fig. 3 shows the temporal DSIW as agraynsteiret al.[4,5] wrote the ME for the TL model. They

function of time for various values @f. The initial condition  jgentified two separate contributions: the substratum and the

is p in all regimes. As we expectd@], the power law holds  diffusion one in the MHS and the DSI\gee Appendix In
only at the criticality. The DSIW goes asymptotically to zero the present paper, we also obtain two contributions: the local
at the pinning and moving phase. In the left plots of Fig. 4,and the contact one. Figure 2 shows the contributions to the
we show the two contributions to the DSIW for different MHS for both models. Notice that each pair of plots have the
values ofp. The local contribution &h;—(h;))®(—z)F;)  same qualitative behavior. The shape of the diffusion and
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T 0.8 evolution of the mean height and the roughness. The ME
p=0.7 | allows us to separate the local and the contact contributions.
We found that the contact contribution near the criticality is
0.4 the main responsibility of the roughness. We found qualita-
0.2 tively that the shape of the contact contribution is analogous
to that of the diffusion one in the TL model, and that the
0.0 shape of the local growth is similar to that of the substratum
0.2 contribution in the TL model. We found that the power law
behavior holds only at the criticality for the Buldyrey al.
model. This last feature, common to the TL model, suggests
0.4 to us that it may be common to all other DPD growth models
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0.3 APPENDIX: MICROSCOPIC EQUATION FOR THE TANG
AND LESCHHORN MODEL
0.2
We present here the microscopic equation for the TL
0.1 model [4,5]. The time evolution equation for the interface

height, in a time stegt, is
0.0

— —o. (t+ot)=h:(t)+ . +W _.+F.(h) YW
210123456 2101234587 hi(t+ D) =hi(O)+ AU Wiy 1+ Wi+ Fi(h) W], (A1)

In t

FIG. 4. Semi-In plots of different contributions to the DSIW as \yijth
function of time for the Buldyreet al. model (left plots) and the
Tang and Leschhorn modélight plotg, for different values op.
The circles represent the contact contributigeft plots) and the
diffusion contribution(right plots. The squares represent the local

W;=1—0[h;—min(h;_1,h;;,)—2],

contribution (left plots) and the substratum (;ontrlbutlo(rlght Wi, ,=0[h;.,—min(h; . ) —2]
plots). For both models, the top, bottom, and middle plots show the
moving, the pinning, and the critical regime, respectively. X{[1-0O(h;—hj+5) ]+ %5hi hiot

substratum contribution in the TL model are qualitatively Whereh; =h;+1. Here®(x) is the unit step function defined
similar with the contact and local contribution in the Bul- as ®(x)=1 for x=0 and equals to 0 otherwis&;(h/)
dyrev et al. model, respectively, even when the microscopicequals to 1 if the cell at the height is free or active(i.e.,
processes are quite different for each model. The differenthe growth may occur at the next sjepr O if the cell is
contributions to the DSIW for both models are shown in Fig.blocked or inactiveF; is the interface activity function.
4. Notice that the diffusion and the contact contributions, in  Averaging over the lattice, takingt— 0, the evolution
each model, can take negative values fiorp. smoothing equation for the mean height is
out the interface. Near the criticality, in both models, the
roughness is mainly due to the diffusion and the contact h
contributions. These last contributions play a very important — =(W,F)+(1-W;), (A2)
role at the criticality in each model. The similarities between dt
the models could explain why these two different micro-
scopic models belong to the same universality class. Figure 8nd the evolution equation for the square interface width is
shows the DSIW as a function of time for both models. As
we expected6], the power law holds only at the criticality W2
despite other authof4,2,7—9. From these plots it is easy to ——=2((hj— () )W,F;)
see that this last statement holds for both models. dt
+2([min(h;_1,hj+1) = (h)J(1-W;)).  (A3)
IV. CONCLUSIONS

We wrote the ME for the evolution of the height in the The first terms of both equations have been identified as the
Buldyrev et al. model and we compared the results obtainedsubstratum growth contributions, and the second terms as the
with those from the TL model. Using the ME we studied thediffusion growth contribution.
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