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Directed percolation depinning models: Evolution equations

L. A. Braunstein,* R. C. Buceta, and N. Giovambattista
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina

A. Dı́az-Sánchez
Departamento de Fı´sica, Universidad de Murcia, E-30071 Murcia, Spain
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We present the microscopic equation for the growing interface with quenched noise for the model first
presented by Buldyrevet al. @Phys. Rev. A45, R8313~1992!#. The evolution equation for the height, the mean
height, and the roughness are reached in a simple way. The microscopic equation allows us to express these
equations in two contributions: the contact and the local one. We compare these two contributions with the
ones obtained for the Tang and Leschhorn model@Phys. Rev A45, R8309 ~1992!# by Braunsteinet al.
@Physica A,266, 308 ~1999!#. Even when the microscopic mechanisms are quiet different in both models, the
two contributions are qualitatively similar. An interesting result is that the diffusion contribution, in the Tang
and Leschhorn model, and the contact one, in the Buldyrev model, leads to an increase of the roughness near
the criticality. @S1063-651X~99!00504-8#

PACS number~s!: 47.55.Mh, 68.35.Fx
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I. INTRODUCTION

The description of the noise-driven growth on a self-affi
interface far from equilibrium is a challenging problem. T
interface has been characterized through scaling of the in
facial widthw with time t and lateral sizeL. The result is the
determination of two exponentsb and a called dynamical
and roughness exponents, respectively. It is well known
interfacial width w;La for t@t* and w;tb for t!t* ,
where t* .La/b is the saturation time. These properties o
cur for many models of surface growth. The values of
exponents leads to the classification of these models in
ferent universality classes. Several models, belonging to
same directed percolation depinning~DPD! universality
class, have been introduced to explain experiments on fl
imbibition in porous media, roughening in slow combusti
of paper, growth of bacterial colonies, etc.

It is currently accepted that the quenched disorder pl
an essential role in those experiments. The DPD models
into account the most important features of the experime
@1,3#. The two first models were simultaneously introduc
by Buldyrevet al. @1# and Tang and Leschhorn@2# to explain
the fluid imbibition in paper sheet. Several authors have
cused their attention on scaling properties and relations
between the dynamical and statics exponent for these m
els. The Tang and Leschhorn~TL! model has recently re
viewed by Braunsteinet al. @4,5# from a different point of
view than the traditional one. The principal contribution w
the restatement of the microscopic equation~ME! for the TL
model ~see Appendix!. This equation allows the separatio
into two contributions: the substratum contribution by loc
growth and the diffusion one. They found that the diffusi
contribution to the temporal derivative of the square rou
ness may be either negative or positive and that the beha
of this contribution depends on the pressurep. The negative
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contribution tends to smooth out the surface; this case do
nates forp.pc ~where pc50.461 is the critical pressure!.
The positive contribution enhances the roughness. At
critical pressure the substratum contribution to the tempo
derivative of the square roughness is practically constant,
the diffusion contribution is very strong. This last contrib
tion has important duties on the power law behavior.

In this paper we focus the attention in the Buldyrevet al.
model of DPD. We show that this model presents seve
qualitative features of the TL model. We write a ME, starti
from the microscopic rules, for the evolution of the height
a function of time. The ME allows us the identification o
two contributions that dominates the dynamics of the syst
the ‘‘contact’’ and the ‘‘local’’ one. In this context we stud
the mean height speed~MHS! and the temporal derivative o
the square interface width~DSIW! as a function of time. We
show that the contact contribution smooths out the surf
for p well above the criticality but enhances the roughne
near the critical value. To our knowledge, the separation i
two contributions for all the quantities studied in the pres
paper and the important duties of the contact contribution
the critical power law behavior has never been studied
fore. The paper is organized as follows. In Sec. II we wr
the microscopic equation for the evolution of height, t
mean height, and the roughness for the Buldyrevet al.
model. We study the MHS, analyzing the contact and
local contributions. Also, the two contributions to the DSI
are analyzed. This separation into two contributions allo
us to explain the mechanism of roughening. In Sec. III
compare the Buldyrevet al. model with the TL model. Fi-
nally, we conclude with a discussion in Sec. IV.

II. BULDYREV et al. MODEL

A. Microscopic equation

The interface growth takes place in a lattice of edgeL
with periodic boundary conditions. A random pinning forc
g(r ) uniformly distributed in@0,1# is assign to every cell of
4243 ©1999 The American Physical Society
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4244 PRE 59L. A. BRAUNSTEIN et al.
the lattice. For a given pressurep, the cells are divided in
two groups, active~free! cells with g(r )<p and inactive
~blocked! cells withg(r ).p. The interface between wet an
dry cells is specified by a set of integer column heightshi
( i 51, . . . ,L). At t50 we start with flat initial conditions,
i.e., hi50 for all i. During the growth, a column is selecte
at random with probability 1/L and the highest dry active
cell, in the chosen column, that is nearest neighbor to a
cell is wetted. Afterwards, we wet all the dry cells below
In this model, the time unit is defined as one growth attem
In numerical simulations at each growth attempt, the timet is
increased bydt51/L. In this way, afterL growth attempts,
the time is increased by one unit. In our simulations we
L58192.

We consider the evolution for the height of theith site of
the process described above. Let us denote byhi(t) the
height of thei-th generic site at timet. From the microscopic
rules we obtain the evolution for theith height in the next
time stepdt51/L,

hi~ t1dt !5hi~ t !1dt$Q~2zi !Fi~hi11!

1@12Q~2zi !#Yi%, ~1!

whereQ(x) is the unit step function defined asQ(x)51 for
x>0 and equals to 0 otherwise,Fi(hi1 j ) equal to 1 if the
cell is active and 0 if the cell is inactive (1< j <zi),zi
5max(hi21,hi11)2hi , and

Yi5ziFi~hi1zi !1~zi21!Fi~hi1zi21!

3@12Fi~hi1zi !#1~zi22!Fi~hi1zi22!

3@12Fi~hi1zi21!#@12Fi~hi1zi !#1•••

1Fi~hi11!@12Fi~hi12!#•••

3@12Fi~hi1zi21!#@12Fi~hi1zi !#,

is the increase of the height in theith column due to the
contact with the nearest lateral neighbor. The term betw
braces in Eq.~1! takes into account all the possible ways t
site i can growth. The height in the sitei is increased by~i! 1
if hi>min(hi11,hi21) and Fi(hi11)51, or ~ii ! Yi if hi
,min(hi11,hi21) andFi(hi1Yi)51. Otherwise, the height is
not increased. We shall call contact contribution to the te
@12Q(2zi)#Yi @related to case~ii !# and local contribution
to the termQ(2zi)Fi(hi11) @related to case~i!#.

Averaging Eq.~1! over the lattice, takingdt→0, the evo-
lution equation for the mean height is

dh

dt
5^Q~2zi !Fi&1^@12Q~2zi !#Yi&, ~2!

and the evolution equation for the square interface width

dw2

dt
52Š~hi2^hi&!Q~2zi !Fi‹

12Š~hi2^hi&!@12Q~2zi !#Yi‹. ~3!
et

t.

e

n

s

The first terms of both equations can be identified as
local growth contribution, and the second term as the con
growth contribution. We shall see in Sec. II C that the se
ration into these two analytical terms allows us to show h
the contact mechanism enhances the roughness near the
cality. In the present paper we focus only on the dynami
behavior, i.e.,t!t* .L for the mean height and roughne
~in the DPD modelsa/b51).

B. Mean height

The top plot of Fig. 1 shows the MHS as a function
time in three regimes~moving, critical, and pinning phases!.
The initial condition for the MHS isp in all regimes. At the
criticality we found for the mean height a power law beha
ior with the same dynamical exponent that the roughness
b50.6860.02 for pc50.531. In the moving and pinning
phase we can see that this power law does not hold. Be
the criticality, in the pinning phase, the MHS goes to ze
Above, in the moving phase, the MHS goes to a cert
constant value. The left plots of Fig. 2 show the contrib
tions to the MHS: the local onêQ(2zi)Fi& and the contact
one ^@12Q(2zi)#Yi&. The local contribution, which is
equal top at t50, is stronger in the early time regime. Th
is because in this regime the difference of heights betw
nearest neighbors is mostly less than one. This contribu
set into motion the contact growth. In the moving phase~see

FIG. 1. Plots ofp21dh/dt vs t. The top~bottom! plot shows the
results for the Buldyrevet al. ~Tang and Leschhorn! model. For the
top plot the parameterp is 0.56 (n), 0.531 (s), and 0.51 (,). For
the bottom plot the parameterp is 0.49 (n), 0.461 (s), and 0.4
(,).
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left top plot of Fig. 2! both contributions go to a certai
constant. In the intermediate regime the local contribut
decreases while the contact one increases. At the critic
and in the pinning phase~see left middle and left bottom
plots of Fig. 2, respectively!, the local contribution decrease
continuously fromp to zero. The contact contribution in
creases from zero to a maximum value and then decre
reaching asymptotically the MHS. In all phases both con
butions are equal att.1. This means that afterL-growth
attempts, the interplay between both mechanisms are e
independently ofp. After this, the dynamical behavior i
strongly dominated by the contact mechanism.

C. Roughness

The top plot of Fig. 3 shows the temporal DSIW as
function of time for various values ofp. The initial condition
is p in all regimes. As we expected@6#, the power law holds
only at the criticality. The DSIW goes asymptotically to ze
at the pinning and moving phase. In the left plots of Fig.
we show the two contributions to the DSIW for differe
values ofp. The local contribution 2Š(hi2^hi&)Q(2zi)Fi‹

FIG. 2. ln-ln plots of different contributions to the MHS a
function of time for the Buldyrevet al. model ~left plots! and the
Tang and Leschhorn model~right plots!, for different values ofp.
The circles represent the contact contribution~left plots! and the
diffusion contribution~right plots!. The squares represent the loc
contribution ~left plots! and the substratum contribution~right
plots!. For both models, the top, bottom, and middle plots show
moving, the pinning, and the critical phases, respectively.
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to the DSIW is always positive. Asp decreases, this contri
bution becomes less important, but always rough the in
face. On the other hand, forp.pc , the contact contribution
2Š(hi2^hi&)@12Q(2zi)#Yi‹ can take negative values
smoothing out the surface. Otherwise, forp.pc , the contact
contribution is always positive roughening the interface. O
could expect that the contact contribution always smoo
out the surface because it tends to widen the roughen pi
However, near the criticality, the contact growth happe
mainly in lateral neighbors cells to few height terraces abo
the mean height. Then, this new wetted column smooths
locally, but it moves away from the mean height increas
the roughness.

III. COMPARISONS WITH THE TANG
AND LESCHHORN MODEL

We rescue the similarities between the Buldyrevet al.and
the Tang and Leschhorn models despite the strong mi
scopic differences between their rules. In a previous pa
Braunsteinet al. @4,5# wrote the ME for the TL model. They
identified two separate contributions: the substratum and
diffusion one in the MHS and the DSIW~see Appendix!. In
the present paper, we also obtain two contributions: the lo
and the contact one. Figure 2 shows the contributions to
MHS for both models. Notice that each pair of plots have
same qualitative behavior. The shape of the diffusion a

e

FIG. 3. DSIW as a function of time. The top~bottom! plot
shows the results for the Buldyrevet al. ~Tang and Leschhorn!
model. For the top plot the parameterp is 0.7 (s), 0.56 (,), 0.531
(d), and 0.51 (n). For the bottom plot the parameterp is 0.7 (s),
0.49 (,), 0.461 (d), and 0.4 (n). In both models the symbold
shows the critical behavior.
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substratum contribution in the TL model are qualitative
similar with the contact and local contribution in the Bu
dyrev et al. model, respectively, even when the microsco
processes are quite different for each model. The differ
contributions to the DSIW for both models are shown in F
4. Notice that the diffusion and the contact contributions,
each model, can take negative values forp.pc smoothing
out the interface. Near the criticality, in both models, t
roughness is mainly due to the diffusion and the cont
contributions. These last contributions play a very import
role at the criticality in each model. The similarities betwe
the models could explain why these two different micr
scopic models belong to the same universality class. Figu
shows the DSIW as a function of time for both models.
we expected@6#, the power law holds only at the criticalit
despite other authors@1,2,7–9#. From these plots it is easy t
see that this last statement holds for both models.

IV. CONCLUSIONS

We wrote the ME for the evolution of the height in th
Buldyrev et al. model and we compared the results obtain
with those from the TL model. Using the ME we studied t

FIG. 4. Semi-ln plots of different contributions to the DSIW
function of time for the Buldyrevet al. model ~left plots! and the
Tang and Leschhorn model~right plots!, for different values ofp.
The circles represent the contact contribution~left plots! and the
diffusion contribution~right plots!. The squares represent the loc
contribution ~left plots! and the substratum contribution~right
plots!. For both models, the top, bottom, and middle plots show
moving, the pinning, and the critical regime, respectively.
nt
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evolution of the mean height and the roughness. The
allows us to separate the local and the contact contributio
We found that the contact contribution near the criticality
the main responsibility of the roughness. We found qual
tively that the shape of the contact contribution is analog
to that of the diffusion one in the TL model, and that th
shape of the local growth is similar to that of the substrat
contribution in the TL model. We found that the power la
behavior holds only at the criticality for the Buldyrevet al.
model. This last feature, common to the TL model, sugge
to us that it may be common to all other DPD growth mod
@9#.
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APPENDIX: MICROSCOPIC EQUATION FOR THE TANG
AND LESCHHORN MODEL

We present here the microscopic equation for the
model @4,5#. The time evolution equation for the interfac
height, in a time stepdt, is

hi~ t1dt !5hi~ t !1dt@Wi 111Wi 211Fi~hi8!Wi #,
~A1!

with

Wi512Q@hi2min~hi 21 ,hi 11!22#,

Wi 615Q@hi 612min~hi ,hi 62!22#

3$@12Q~hi2hi 62!#1 1
2 dhi ,hi 62

%.

wherehi85hi11. HereQ(x) is the unit step function defined
as Q(x)51 for x>0 and equals to 0 otherwise.Fi(hi8)
equals to 1 if the cell at the heighthi8 is free or active~i.e.,
the growth may occur at the next step! or 0 if the cell is
blocked or inactive.Fi is the interface activity function.

Averaging over the lattice, takingdt→0, the evolution
equation for the mean height is

dh

dt
5^WiFi&1^12Wi&, ~A2!

and the evolution equation for the square interface width

dw2

dt
52Š~hi2^hi&!WiFi‹

12Š@min~hi 21 ,hi 11!2^hi&#~12Wi !‹. ~A3!

The first terms of both equations have been identified as
substratum growth contributions, and the second terms as
diffusion growth contribution.

e
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